MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. S31100 Stainless Steel

CC382H copper-nickel belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
270
Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 20
4.5
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 53
79
Tensile Strength: Ultimate (UTS), MPa 490
1000
Tensile Strength: Yield (Proof), MPa 290
710

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 260
1100
Melting Completion (Liquidus), °C 1180
1420
Melting Onset (Solidus), °C 1120
1380
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 30
16
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 41
16
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.2
3.1
Embodied Energy, MJ/kg 76
44
Embodied Water, L/kg 290
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
40
Resilience: Unit (Modulus of Resilience), kJ/m3 290
1240
Stiffness to Weight: Axial, points 8.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
36
Strength to Weight: Bending, points 16
29
Thermal Diffusivity, mm2/s 8.2
4.2
Thermal Shock Resistance, points 16
28

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 1.5 to 2.0
25 to 27
Copper (Cu), % 62.8 to 68.4
0
Iron (Fe), % 0.5 to 1.0
63.6 to 69
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Nickel (Ni), % 29 to 32
6.0 to 7.0
Phosphorus (P), % 0 to 0.010
0 to 0.045
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.15
0