MakeItFrom.com
Menu (ESC)

CC382H Copper-nickel vs. S32001 Stainless Steel

CC382H copper-nickel belongs to the copper alloys classification, while S32001 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC382H copper-nickel and the bottom bar is S32001 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 20
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 53
78
Tensile Strength: Ultimate (UTS), MPa 490
690
Tensile Strength: Yield (Proof), MPa 290
510

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 260
970
Melting Completion (Liquidus), °C 1180
1420
Melting Onset (Solidus), °C 1120
1370
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 5.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.2
2.6
Embodied Energy, MJ/kg 76
37
Embodied Water, L/kg 290
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
180
Resilience: Unit (Modulus of Resilience), kJ/m3 290
660
Stiffness to Weight: Axial, points 8.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
25
Strength to Weight: Bending, points 16
23
Thermal Diffusivity, mm2/s 8.2
4.0
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Bismuth (Bi), % 0 to 0.0020
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 1.5 to 2.0
19.5 to 21.5
Copper (Cu), % 62.8 to 68.4
0 to 1.0
Iron (Fe), % 0.5 to 1.0
66.6 to 75.5
Lead (Pb), % 0 to 0.0050
0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0.5 to 1.0
4.0 to 6.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 29 to 32
1.0 to 3.0
Nitrogen (N), % 0
0.050 to 0.17
Phosphorus (P), % 0 to 0.010
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0.15 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tellurium (Te), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.15
0