MakeItFrom.com
Menu (ESC)

CC493K Bronze vs. ASTM A182 Grade F22V

CC493K bronze belongs to the copper alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC493K bronze and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74
210
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
74
Tensile Strength: Ultimate (UTS), MPa 270
670
Tensile Strength: Yield (Proof), MPa 140
460

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 160
460
Melting Completion (Liquidus), °C 960
1470
Melting Onset (Solidus), °C 880
1430
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 32
4.2
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.3
2.5
Embodied Energy, MJ/kg 53
35
Embodied Water, L/kg 370
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
120
Resilience: Unit (Modulus of Resilience), kJ/m3 89
570
Stiffness to Weight: Axial, points 6.5
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.6
24
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 19
11
Thermal Shock Resistance, points 10
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 79 to 86
0 to 0.2
Iron (Fe), % 0 to 0.2
94.6 to 96.4
Lead (Pb), % 5.0 to 8.0
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 2.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0 to 0.1
0 to 0.015
Silicon (Si), % 0 to 0.010
0 to 0.1
Sulfur (S), % 0 to 0.1
0 to 0.010
Tin (Sn), % 5.2 to 8.0
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 2.0 to 5.0
0