MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. EN 1.0034 Steel

CC498K bronze belongs to the copper alloys classification, while EN 1.0034 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
9.0 to 32
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 260
340 to 380
Tensile Strength: Yield (Proof), MPa 130
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 73
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 360
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 72
84 to 210
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.1
12 to 13
Strength to Weight: Bending, points 10
14 to 15
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 9.3
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
98.7 to 100
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 0.35
Sulfur (S), % 0 to 0.1
0 to 0.045
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0