MakeItFrom.com
Menu (ESC)

CC751S Brass vs. 2025 Aluminum

CC751S brass belongs to the copper alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is CC751S brass and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
110
Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 5.6
15
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 450
400
Tensile Strength: Yield (Proof), MPa 320
260

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 850
640
Melting Onset (Solidus), °C 810
520
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
40
Electrical Conductivity: Equal Weight (Specific), % IACS 28
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 330
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
55
Resilience: Unit (Modulus of Resilience), kJ/m3 480
450
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 15
37
Strength to Weight: Bending, points 16
40
Thermal Diffusivity, mm2/s 35
58
Thermal Shock Resistance, points 15
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
90.9 to 95.2
Antimony (Sb), % 0 to 0.5
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 62.7 to 66
3.9 to 5.0
Iron (Fe), % 0.25 to 0.5
0 to 1.0
Lead (Pb), % 0.8 to 2.2
0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.15
0.4 to 1.2
Nickel (Ni), % 0 to 0.8
0
Silicon (Si), % 0.65 to 1.1
0.5 to 1.2
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 27.9 to 35.6
0 to 0.25
Residuals, % 0
0 to 0.15