MakeItFrom.com
Menu (ESC)

CC751S Brass vs. S44537 Stainless Steel

CC751S brass belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
21
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 450
510
Tensile Strength: Yield (Proof), MPa 320
360

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 850
1480
Melting Onset (Solidus), °C 810
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
19
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 46
50
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
95
Resilience: Unit (Modulus of Resilience), kJ/m3 480
320
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 35
5.6
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.1
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 62.7 to 66
0 to 0.5
Iron (Fe), % 0.25 to 0.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.8
Nickel (Ni), % 0 to 0.8
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.65 to 1.1
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 27.9 to 35.6
0