MakeItFrom.com
Menu (ESC)

CC752S Brass vs. AWS E70C-Ni2

CC752S brass belongs to the copper alloys classification, while AWS E70C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.4
27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 350
560
Tensile Strength: Yield (Proof), MPa 190
450

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 800
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.3
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
540
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 13
19
Thermal Diffusivity, mm2/s 35
14
Thermal Shock Resistance, points 12
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 61.5 to 64.5
0 to 0.35
Iron (Fe), % 0 to 0.3
94.1 to 98.3
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Nickel (Ni), % 0 to 0.2
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.020
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 31.5 to 36.7
0
Residuals, % 0
0 to 0.5