MakeItFrom.com
Menu (ESC)

CC752S Brass vs. C34500 Brass

Both CC752S brass and C34500 brass are copper alloys. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 8.4
12 to 28
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 350
340 to 430
Tensile Strength: Yield (Proof), MPa 190
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 840
910
Melting Onset (Solidus), °C 800
890
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
26
Electrical Conductivity: Equal Weight (Specific), % IACS 28
29

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
45
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 180
69 to 160
Stiffness to Weight: Axial, points 7.1
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
12 to 15
Strength to Weight: Bending, points 13
13 to 16
Thermal Diffusivity, mm2/s 35
37
Thermal Shock Resistance, points 12
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Copper (Cu), % 61.5 to 64.5
62 to 65
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 1.5 to 2.2
1.5 to 2.5
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.020
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
32 to 36.5
Residuals, % 0
0 to 0.4