MakeItFrom.com
Menu (ESC)

CC753S Brass vs. Grade 24 Titanium

CC753S brass belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17
11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 340
1010
Tensile Strength: Yield (Proof), MPa 170
940

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 820
1610
Melting Onset (Solidus), °C 780
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 99
7.1
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.8
43
Embodied Energy, MJ/kg 47
710
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
4160
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 12
63
Strength to Weight: Bending, points 13
50
Thermal Diffusivity, mm2/s 32
2.9
Thermal Shock Resistance, points 11
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 0.8
5.5 to 6.8
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 56.8 to 60.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 0.8
0 to 0.4
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 1.2
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 33.1 to 40
0
Residuals, % 0
0 to 0.4