MakeItFrom.com
Menu (ESC)

CC754S Brass vs. EN 1.4938 Stainless Steel

CC754S brass belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
16 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 320
870 to 1030
Tensile Strength: Yield (Proof), MPa 160
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
750
Melting Completion (Liquidus), °C 830
1460
Melting Onset (Solidus), °C 780
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 95
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1050 to 1920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
31 to 37
Strength to Weight: Bending, points 13
26 to 29
Thermal Diffusivity, mm2/s 31
8.1
Thermal Shock Resistance, points 10
30 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 57 to 63
0
Iron (Fe), % 0 to 0.7
80.5 to 84.8
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 30.2 to 42.5
0