MakeItFrom.com
Menu (ESC)

CC755S Brass vs. Grade 25 Titanium

CC755S brass belongs to the copper alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 9.5
11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 390
1000
Tensile Strength: Yield (Proof), MPa 250
940

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
340
Melting Completion (Liquidus), °C 820
1610
Melting Onset (Solidus), °C 780
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.7
43
Embodied Energy, MJ/kg 46
700
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
110
Resilience: Unit (Modulus of Resilience), kJ/m3 290
4220
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 14
62
Strength to Weight: Bending, points 15
50
Thermal Diffusivity, mm2/s 38
2.8
Thermal Shock Resistance, points 13
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 0.7
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 59.5 to 61
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0.050 to 0.2
0 to 0.4
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.2
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 35.8 to 38.9
0
Residuals, % 0
0 to 0.4