MakeItFrom.com
Menu (ESC)

CC761S Brass vs. ASTM A356 Grade 9

CC761S brass belongs to the copper alloys classification, while ASTM A356 grade 9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC761S brass and the bottom bar is ASTM A356 grade 9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.7
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
670
Tensile Strength: Yield (Proof), MPa 340
460

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 960
1470
Melting Onset (Solidus), °C 910
1430
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 27
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 43
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
3.6
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 300
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
100
Resilience: Unit (Modulus of Resilience), kJ/m3 530
570
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 8.0
11
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 78 to 83
0
Iron (Fe), % 0 to 0.6
95.2 to 97.2
Lead (Pb), % 0 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 3.0 to 5.0
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Vanadium (V), % 0
0.2 to 0.35
Zinc (Zn), % 8.9 to 19
0