MakeItFrom.com
Menu (ESC)

CC766S Brass vs. EN 1.4938 Stainless Steel

CC766S brass belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 28
16 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
870 to 1030
Tensile Strength: Yield (Proof), MPa 190
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 130
750
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 89
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1050 to 1920
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 17
31 to 37
Strength to Weight: Bending, points 18
26 to 29
Thermal Diffusivity, mm2/s 28
8.1
Thermal Shock Resistance, points 17
30 to 35

Alloy Composition

Aluminum (Al), % 0.3 to 1.8
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
80.5 to 84.8
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 2.0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 29.5 to 41.7
0