MakeItFrom.com
Menu (ESC)

CC766S Brass vs. C18700 Copper

Both CC766S brass and C18700 copper are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC766S brass and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
9.0 to 9.6
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 500
290 to 330
Tensile Strength: Yield (Proof), MPa 190
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 840
1080
Melting Onset (Solidus), °C 800
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 89
380
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
98
Electrical Conductivity: Equal Weight (Specific), % IACS 36
99

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240 to 280
Stiffness to Weight: Axial, points 7.3
7.1
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 17
9.0 to 10
Strength to Weight: Bending, points 18
11 to 12
Thermal Diffusivity, mm2/s 28
110
Thermal Shock Resistance, points 17
10 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 1.8
0
Antimony (Sb), % 0 to 0.1
0
Copper (Cu), % 58 to 64
98 to 99.2
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0 to 0.5
0.8 to 1.5
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 2.0
0
Silicon (Si), % 0 to 0.6
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 29.5 to 41.7
0
Residuals, % 0
0 to 0.5