MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. EN 1.4594 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
11 to 17
Fatigue Strength, MPa 110
490 to 620
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 130
620 to 700
Tensile Strength: Ultimate (UTS), MPa 230
1020 to 1170
Tensile Strength: Yield (Proof), MPa 150
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 140
820
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
15
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 24
3.2
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 940
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
36 to 41
Strength to Weight: Bending, points 44
29 to 31
Thermal Diffusivity, mm2/s 61
4.4
Thermal Shock Resistance, points 14
34 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0 to 0.030
1.2 to 2.0
Iron (Fe), % 0 to 0.010
72.6 to 79.5
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0 to 0.0050
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0