MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. 356.0 Aluminum

EN-MC65120 magnesium belongs to the magnesium alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
55 to 75
Elastic (Young's, Tensile) Modulus, GPa 45
70
Elongation at Break, % 3.1
2.0 to 3.8
Fatigue Strength, MPa 80
55 to 75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
27
Shear Strength, MPa 92
140 to 190
Tensile Strength: Ultimate (UTS), MPa 160
160 to 240
Tensile Strength: Yield (Proof), MPa 110
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 590
620
Melting Onset (Solidus), °C 520
570
Specific Heat Capacity, J/kg-K 970
900
Thermal Conductivity, W/m-K 100
150 to 170
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
40 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140 to 150

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 1.9
2.6
Embodied Carbon, kg CO2/kg material 25
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 930
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
3.2 to 8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 140
70 to 250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
53
Strength to Weight: Axial, points 23
17 to 26
Strength to Weight: Bending, points 34
25 to 33
Thermal Diffusivity, mm2/s 56
64 to 71
Thermal Shock Resistance, points 9.8
7.6 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
90.1 to 93.3
Copper (Cu), % 0 to 0.030
0 to 0.25
Iron (Fe), % 0 to 0.010
0 to 0.6
Magnesium (Mg), % 91.8 to 95.1
0.2 to 0.45
Manganese (Mn), % 0 to 0.15
0 to 0.35
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0 to 0.35
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.15