MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. Grade 23 Titanium

EN-MC65120 magnesium belongs to the magnesium alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 3.1
6.7 to 11
Fatigue Strength, MPa 80
470 to 500
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Shear Strength, MPa 92
540 to 570
Tensile Strength: Ultimate (UTS), MPa 160
930 to 940
Tensile Strength: Yield (Proof), MPa 110
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 590
1610
Melting Onset (Solidus), °C 520
1560
Specific Heat Capacity, J/kg-K 970
560
Thermal Conductivity, W/m-K 100
7.1
Thermal Expansion, µm/m-K 26
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
36
Density, g/cm3 1.9
4.4
Embodied Carbon, kg CO2/kg material 25
38
Embodied Energy, MJ/kg 190
610
Embodied Water, L/kg 930
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
3430 to 3560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
35
Strength to Weight: Axial, points 23
58 to 59
Strength to Weight: Bending, points 34
48
Thermal Diffusivity, mm2/s 56
2.9
Thermal Shock Resistance, points 9.8
67 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.010
0 to 0.25
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 0.010
0
Titanium (Ti), % 0
88.1 to 91
Unspecified Rare Earths, % 2.5 to 4.0
0
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.4