MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. EN 1.4006 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while EN 1.4006 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is EN 1.4006 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.6
16 to 23
Fatigue Strength, MPa 70
150 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 140
370 to 460
Tensile Strength: Ultimate (UTS), MPa 150
590 to 750
Tensile Strength: Yield (Proof), MPa 100
230 to 510

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 250
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 100
30
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 25
1.9
Embodied Energy, MJ/kg 190
27
Embodied Water, L/kg 930
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
99 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
21 to 27
Strength to Weight: Bending, points 33
20 to 24
Thermal Diffusivity, mm2/s 54
8.1
Thermal Shock Resistance, points 9.2
21 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
83.1 to 88.4
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.010
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0