MakeItFrom.com
Menu (ESC)

H06 C52400 Bronze vs. H06 C74500 Nickel Silver

Both H06 C52400 bronze and H06 C74500 nickel silver are copper alloys. Both are furnished in the H06 (extra hard) temper. They have 65% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is H06 C52400 bronze and the bottom bar is H06 C74500 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.34
0.32
Rockwell B Hardness 100
92
Rockwell Superficial 30T Hardness 82
78
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 790
660

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1000
1020
Melting Onset (Solidus), °C 840
970
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 50
45
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 35
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 3.6
3.4
Embodied Energy, MJ/kg 58
54
Embodied Water, L/kg 390
310

Common Calculations

Stiffness to Weight: Axial, points 6.9
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 15
14
Thermal Shock Resistance, points 29
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 87.8 to 91
63.5 to 66.5
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0.030 to 0.35
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.2
21.2 to 27.5
Residuals, % 0 to 0.5
0 to 0.5