MakeItFrom.com
Menu (ESC)

H10 C12500 Copper vs. H10 C43000 Brass

Both H10 C12500 copper and H10 C43000 brass are copper alloys. Both are furnished in the H10 (extra spring) temper. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is H10 C12500 copper and the bottom bar is H10 C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.3
3.0
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 62
100
Rockwell Superficial 30T Hardness 64
86
Shear Modulus, GPa 43
42
Shear Strength, MPa 200
410
Tensile Strength: Ultimate (UTS), MPa 400
710
Tensile Strength: Yield (Proof), MPa 390
550

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1070
1000
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 350
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
27
Electrical Conductivity: Equal Weight (Specific), % IACS 93
28

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.9
20
Resilience: Unit (Modulus of Resilience), kJ/m3 660
1350
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12
23
Strength to Weight: Bending, points 13
20
Thermal Diffusivity, mm2/s 100
36
Thermal Shock Resistance, points 14
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
84 to 87
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0 to 0.0040
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0 to 0.3
0 to 0.5