MakeItFrom.com
Menu (ESC)

H10 C12900 Copper vs. H10 C22000 Bronze

Both H10 C12900 copper and H10 C22000 bronze are copper alloys. Both are furnished in the H10 (extra spring) temper. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is H10 C12900 copper and the bottom bar is H10 C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 4.0
1.9
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 62
81
Rockwell Superficial 30T Hardness 64
73
Shear Modulus, GPa 43
42
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 390
520
Tensile Strength: Yield (Proof), MPa 380
500

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 1030
1020
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 380
190
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
44
Electrical Conductivity: Equal Weight (Specific), % IACS 98
45

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16
9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 640
1110
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12
17
Strength to Weight: Bending, points 13
17
Thermal Diffusivity, mm2/s 110
56
Thermal Shock Resistance, points 14
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
89 to 91
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0 to 0.0040
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Silver (Ag), % 0 to 0.054
0
Tellurium (Te), % 0 to 0.025
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2