MakeItFrom.com
Menu (ESC)

H04 C32000 Brass vs. H04 C52100 Bronze

Both H04 C32000 brass and H04 C52100 bronze are copper alloys. Both are furnished in the H04 (full hard) temper. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H04 C32000 brass and the bottom bar is H04 C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 41
41
Shear Strength, MPa 280
370
Tensile Strength: Ultimate (UTS), MPa 470
610
Tensile Strength: Yield (Proof), MPa 390
500

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1020
1030
Melting Onset (Solidus), °C 990
880
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 160
62
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
13
Electrical Conductivity: Equal Weight (Specific), % IACS 37
13

Otherwise Unclassified Properties

Base Metal Price, % relative 28
34
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
55
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
86
Resilience: Unit (Modulus of Resilience), kJ/m3 680
1110
Stiffness to Weight: Axial, points 7.1
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 47
19
Thermal Shock Resistance, points 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 83.5 to 86.5
89.8 to 93
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 1.5 to 2.2
0 to 0.050
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 10.6 to 15
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.5