MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. AISI 384 Stainless Steel

Grade 1 titanium belongs to the titanium alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
150
Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 310
480

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
910
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 20
16
Thermal Expansion, µm/m-K 8.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.7
Embodied Energy, MJ/kg 510
52
Embodied Water, L/kg 110
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 8.2
4.3
Thermal Shock Resistance, points 24
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
60.9 to 68
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
17 to 19
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0