MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. ASTM A372 Grade M Steel

Grade 1 titanium belongs to the titanium alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
18 to 21
Fatigue Strength, MPa 170
450 to 520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 200
510 to 570
Tensile Strength: Ultimate (UTS), MPa 310
810 to 910
Tensile Strength: Yield (Proof), MPa 220
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
450
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 20
46
Thermal Expansion, µm/m-K 8.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
5.0
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 510
27
Embodied Water, L/kg 110
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1140 to 1580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
29 to 32
Strength to Weight: Bending, points 23
24 to 27
Thermal Diffusivity, mm2/s 8.2
12
Thermal Shock Resistance, points 24
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
92.5 to 95.1
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 99.095 to 100
0
Vanadium (V), % 0
0 to 0.080
Residuals, % 0 to 0.4
0