MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. AWS ER80S-Ni1

Grade 1 titanium belongs to the titanium alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
27
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
72
Tensile Strength: Ultimate (UTS), MPa 310
630
Tensile Strength: Yield (Proof), MPa 220
530

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 20
41
Thermal Expansion, µm/m-K 8.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.7
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.6
Embodied Energy, MJ/kg 510
21
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 8.2
11
Thermal Shock Resistance, points 24
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
95.3 to 98.8
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0.8 to 1.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 99.095 to 100
0
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.4
0 to 0.5