MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. Grade 15 Titanium

Both grade 1 titanium and grade 15 titanium are titanium alloys. Both are furnished in the annealed condition. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
20
Fatigue Strength, MPa 170
290
Poisson's Ratio 0.32
0.32
Reduction in Area, % 36
28
Shear Modulus, GPa 39
41
Shear Strength, MPa 200
340
Tensile Strength: Ultimate (UTS), MPa 310
540
Tensile Strength: Yield (Proof), MPa 220
430

Thermal Properties

Latent Heat of Fusion, J/g 420
420
Maximum Temperature: Mechanical, °C 320
320
Melting Completion (Liquidus), °C 1660
1660
Melting Onset (Solidus), °C 1610
1610
Specific Heat Capacity, J/kg-K 540
540
Thermal Conductivity, W/m-K 20
21
Thermal Expansion, µm/m-K 8.8
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
37
Density, g/cm3 4.5
4.5
Embodied Carbon, kg CO2/kg material 31
32
Embodied Energy, MJ/kg 510
520
Embodied Water, L/kg 110
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
100
Resilience: Unit (Modulus of Resilience), kJ/m3 230
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
35
Strength to Weight: Axial, points 19
33
Strength to Weight: Bending, points 23
33
Thermal Diffusivity, mm2/s 8.2
8.4
Thermal Shock Resistance, points 24
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.080
Hydrogen (H), % 0 to 0.015
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.3
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0 to 0.030
0 to 0.050
Oxygen (O), % 0 to 0.18
0 to 0.25
Ruthenium (Ru), % 0
0.040 to 0.060
Titanium (Ti), % 99.095 to 100
98.2 to 99.56
Residuals, % 0 to 0.4
0 to 0.4