MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. C28000 Muntz Metal

Grade 1 titanium belongs to the titanium alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 28
10 to 45
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
40
Shear Strength, MPa 200
230 to 330
Tensile Strength: Ultimate (UTS), MPa 310
330 to 610
Tensile Strength: Yield (Proof), MPa 220
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
900
Melting Onset (Solidus), °C 1610
900
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 20
120
Thermal Expansion, µm/m-K 8.8
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
46
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 230
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 19
11 to 21
Strength to Weight: Bending, points 23
13 to 20
Thermal Diffusivity, mm2/s 8.2
40
Thermal Shock Resistance, points 24
11 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
59 to 63
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Titanium (Ti), % 99.095 to 100
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0 to 0.4
0 to 0.3