MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. C64200 Bronze

Grade 1 titanium belongs to the titanium alloys classification, while C64200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
14 to 35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
42
Shear Strength, MPa 200
330 to 390
Tensile Strength: Ultimate (UTS), MPa 310
540 to 640
Tensile Strength: Yield (Proof), MPa 220
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
210
Melting Completion (Liquidus), °C 1660
1000
Melting Onset (Solidus), °C 1610
980
Specific Heat Capacity, J/kg-K 540
430
Thermal Conductivity, W/m-K 20
45
Thermal Expansion, µm/m-K 8.8
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 31
3.0
Embodied Energy, MJ/kg 510
50
Embodied Water, L/kg 110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 230
240 to 470
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 19
18 to 21
Strength to Weight: Bending, points 23
18 to 20
Thermal Diffusivity, mm2/s 8.2
13
Thermal Shock Resistance, points 24
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
88.2 to 92.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Silicon (Si), % 0
1.5 to 2.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 99.095 to 100
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.5