MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. C66700 Brass

Grade 1 titanium belongs to the titanium alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 28
2.0 to 58
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
41
Shear Strength, MPa 200
250 to 530
Tensile Strength: Ultimate (UTS), MPa 310
340 to 690
Tensile Strength: Yield (Proof), MPa 220
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 420
180
Maximum Temperature: Mechanical, °C 320
140
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1050
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 20
97
Thermal Expansion, µm/m-K 8.8
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
17
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
19

Otherwise Unclassified Properties

Base Metal Price, % relative 37
25
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 230
49 to 1900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 19
11 to 23
Strength to Weight: Bending, points 23
13 to 21
Thermal Diffusivity, mm2/s 8.2
30
Thermal Shock Resistance, points 24
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
68.5 to 71.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0
0.8 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Titanium (Ti), % 99.095 to 100
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0 to 0.4
0 to 0.5