MakeItFrom.com
Menu (ESC)

Grade 1 Titanium vs. S17400 Stainless Steel

Grade 1 titanium belongs to the titanium alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 1 titanium and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 28
11 to 21
Fatigue Strength, MPa 170
380 to 670
Poisson's Ratio 0.32
0.28
Reduction in Area, % 36
40 to 62
Shear Modulus, GPa 39
75
Shear Strength, MPa 200
570 to 830
Tensile Strength: Ultimate (UTS), MPa 310
910 to 1390
Tensile Strength: Yield (Proof), MPa 220
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
850
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 20
17
Thermal Expansion, µm/m-K 8.8
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
39
Embodied Water, L/kg 110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 19
32 to 49
Strength to Weight: Bending, points 23
27 to 35
Thermal Diffusivity, mm2/s 8.2
4.5
Thermal Shock Resistance, points 24
30 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
70.4 to 78.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.18
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.095 to 100
0
Residuals, % 0 to 0.4
0