MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. ACI-ASTM CA15M Steel

Grade 12 titanium belongs to the titanium alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
20
Fatigue Strength, MPa 280
330
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
34
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 530
690
Tensile Strength: Yield (Proof), MPa 410
510

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
760
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
27
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.1
Embodied Energy, MJ/kg 500
29
Embodied Water, L/kg 110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 770
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 8.5
7.2
Thermal Shock Resistance, points 37
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82.1 to 88.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
0.15 to 1.0
Nickel (Ni), % 0.6 to 0.9
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0