MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. ACI-ASTM CN7M Steel

Grade 12 titanium belongs to the titanium alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
44
Fatigue Strength, MPa 280
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 530
480
Tensile Strength: Yield (Proof), MPa 410
200

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1450
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 9.6
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
32
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
5.6
Embodied Energy, MJ/kg 500
78
Embodied Water, L/kg 110
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 770
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 32
17
Thermal Diffusivity, mm2/s 8.5
5.6
Thermal Shock Resistance, points 37
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
37.4 to 48.5
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.4
2.0 to 3.0
Nickel (Ni), % 0.6 to 0.9
27.5 to 30.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0