MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. AISI 201 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
4.6 to 51
Fatigue Strength, MPa 280
280 to 600
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 330
450 to 840
Tensile Strength: Ultimate (UTS), MPa 530
650 to 1450
Tensile Strength: Yield (Proof), MPa 410
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
880
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
38
Embodied Water, L/kg 110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 770
230 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
23 to 52
Strength to Weight: Bending, points 32
22 to 37
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 37
14 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
67.5 to 75
Manganese (Mn), % 0
5.5 to 7.5
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0 to 0.25
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0