MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. AISI 202 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
14 to 45
Fatigue Strength, MPa 280
290 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 330
490 to 590
Tensile Strength: Ultimate (UTS), MPa 530
700 to 980
Tensile Strength: Yield (Proof), MPa 410
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
910
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
40
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 770
250 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
25 to 35
Strength to Weight: Bending, points 32
23 to 29
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 37
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
63.5 to 71.5
Manganese (Mn), % 0
7.5 to 10
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
4.0 to 6.0
Nitrogen (N), % 0 to 0.030
0 to 0.25
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0