MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. AISI 317 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while AISI 317 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170 to 220
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
35 to 55
Fatigue Strength, MPa 280
250 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
79
Shear Strength, MPa 330
420 to 470
Tensile Strength: Ultimate (UTS), MPa 530
580 to 710
Tensile Strength: Yield (Proof), MPa 410
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
590
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
21
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
4.3
Embodied Energy, MJ/kg 500
59
Embodied Water, L/kg 110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 770
150 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
20 to 25
Strength to Weight: Bending, points 32
20 to 22
Thermal Diffusivity, mm2/s 8.5
4.1
Thermal Shock Resistance, points 37
12 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
18 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
58 to 68
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.2 to 0.4
3.0 to 4.0
Nickel (Ni), % 0.6 to 0.9
11 to 15
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0