MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S31260 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
23
Fatigue Strength, MPa 280
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
80
Shear Strength, MPa 330
500
Tensile Strength: Ultimate (UTS), MPa 530
790
Tensile Strength: Yield (Proof), MPa 410
540

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
3.9
Embodied Energy, MJ/kg 500
53
Embodied Water, L/kg 110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 770
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
28
Strength to Weight: Bending, points 32
24
Thermal Diffusivity, mm2/s 8.5
4.3
Thermal Shock Resistance, points 37
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
59.6 to 67.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
2.5 to 3.5
Nickel (Ni), % 0.6 to 0.9
5.5 to 7.5
Nitrogen (N), % 0 to 0.030
0.1 to 0.3
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0
Tungsten (W), % 0
0.1 to 0.5
Residuals, % 0 to 0.4
0