MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S32003 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
28
Fatigue Strength, MPa 280
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
79
Shear Strength, MPa 330
480
Tensile Strength: Ultimate (UTS), MPa 530
730
Tensile Strength: Yield (Proof), MPa 410
510

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1010
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
3.0
Embodied Energy, MJ/kg 500
42
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 770
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
26
Strength to Weight: Bending, points 32
23
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 37
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
68.2 to 75.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.2 to 0.4
1.5 to 2.0
Nickel (Ni), % 0.6 to 0.9
3.0 to 4.0
Nitrogen (N), % 0 to 0.030
0.14 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0