MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S40975 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S40975 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
22
Fatigue Strength, MPa 280
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 330
290
Tensile Strength: Ultimate (UTS), MPa 530
460
Tensile Strength: Yield (Proof), MPa 410
310

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
710
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 500
28
Embodied Water, L/kg 110
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
93
Resilience: Unit (Modulus of Resilience), kJ/m3 770
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 32
17
Thermal Diffusivity, mm2/s 8.5
7.0
Thermal Shock Resistance, points 37
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
84.4 to 89
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.6 to 0.9
0.5 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.6 to 99.2
0 to 0.75
Residuals, % 0 to 0.4
0