MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S44725 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
22
Fatigue Strength, MPa 280
210
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
81
Shear Strength, MPa 330
320
Tensile Strength: Ultimate (UTS), MPa 530
500
Tensile Strength: Yield (Proof), MPa 410
310

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 9.6
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
15
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
3.1
Embodied Energy, MJ/kg 500
44
Embodied Water, L/kg 110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
99
Resilience: Unit (Modulus of Resilience), kJ/m3 770
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 8.5
4.6
Thermal Shock Resistance, points 37
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
67.6 to 73.5
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0.2 to 0.4
1.5 to 2.5
Nickel (Ni), % 0.6 to 0.9
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0 to 0.030
0 to 0.018
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 97.6 to 99.2
0 to 0.26
Residuals, % 0 to 0.4
0