MakeItFrom.com
Menu (ESC)

Grade 12 Titanium vs. S82122 Stainless Steel

Grade 12 titanium belongs to the titanium alloys classification, while S82122 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 12 titanium and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
34
Fatigue Strength, MPa 280
360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
78
Shear Strength, MPa 330
460
Tensile Strength: Ultimate (UTS), MPa 530
680
Tensile Strength: Yield (Proof), MPa 410
450

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
37
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 770
510
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 32
22
Thermal Diffusivity, mm2/s 8.5
4.0
Thermal Shock Resistance, points 37
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
20.5 to 21.5
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
68.9 to 75.4
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0.2 to 0.4
0 to 0.6
Nickel (Ni), % 0.6 to 0.9
1.5 to 2.5
Nitrogen (N), % 0 to 0.030
0.15 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 97.6 to 99.2
0
Residuals, % 0 to 0.4
0