MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. 5383 Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11 to 17
6.7 to 15
Fatigue Strength, MPa 330 to 480
130 to 200
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 420 to 590
190 to 220
Tensile Strength: Ultimate (UTS), MPa 690 to 980
310 to 370
Tensile Strength: Yield (Proof), MPa 540 to 810
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1640
650
Melting Onset (Solidus), °C 1590
540
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
130
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
97

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 41
9.0
Embodied Energy, MJ/kg 670
160
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
170 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 43 to 61
32 to 38
Strength to Weight: Bending, points 39 to 49
38 to 42
Thermal Diffusivity, mm2/s 3.4
51
Thermal Shock Resistance, points 47 to 67
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
92 to 95.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 92.5 to 95.5
0 to 0.15
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants