MakeItFrom.com
Menu (ESC)

Grade 18 Titanium vs. A360.0 Aluminum

Grade 18 titanium belongs to the titanium alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 18 titanium and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 11 to 17
1.6 to 5.0
Fatigue Strength, MPa 330 to 480
82 to 150
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 420 to 590
180
Tensile Strength: Ultimate (UTS), MPa 690 to 980
180 to 320
Tensile Strength: Yield (Proof), MPa 540 to 810
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
680
Melting Onset (Solidus), °C 1590
590
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.3
110
Thermal Expansion, µm/m-K 9.9
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 41
7.8
Embodied Energy, MJ/kg 670
150
Embodied Water, L/kg 270
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 110
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3110
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 43 to 61
19 to 34
Strength to Weight: Bending, points 39 to 49
27 to 39
Thermal Diffusivity, mm2/s 3.4
48
Thermal Shock Resistance, points 47 to 67
8.5 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
85.8 to 90.6
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.25

Comparable Variants