MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. EN 1.0038 Steel

Grade 20 titanium belongs to the titanium alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.7 to 17
23 to 25
Fatigue Strength, MPa 550 to 630
140 to 160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 47
73
Shear Strength, MPa 560 to 740
240 to 270
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
380 to 430
Tensile Strength: Yield (Proof), MPa 850 to 1190
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1600
1420
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
12

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.8
Embodied Carbon, kg CO2/kg material 52
1.4
Embodied Energy, MJ/kg 860
19
Embodied Water, L/kg 350
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
110 to 130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 33
24
Strength to Weight: Axial, points 50 to 70
13 to 15
Strength to Weight: Bending, points 41 to 52
15 to 16
Thermal Shock Resistance, points 55 to 77
12 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0
Carbon (C), % 0 to 0.050
0 to 0.23
Chromium (Cr), % 5.5 to 6.5
0 to 0.3
Copper (Cu), % 0
0 to 0.6
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
97.1 to 100
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 3.5 to 4.5
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.030
0 to 0.014
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 71 to 77
0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0

Comparable Variants