MakeItFrom.com
Menu (ESC)

Grade 20 Titanium vs. S44537 Stainless Steel

Grade 20 titanium belongs to the titanium alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade 20 titanium and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.7 to 17
21
Fatigue Strength, MPa 550 to 630
230
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 47
79
Shear Strength, MPa 560 to 740
320
Tensile Strength: Ultimate (UTS), MPa 900 to 1270
510
Tensile Strength: Yield (Proof), MPa 850 to 1190
360

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 370
1000
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1600
1430
Specific Heat Capacity, J/kg-K 520
470
Thermal Expansion, µm/m-K 9.6
11

Otherwise Unclassified Properties

Density, g/cm3 5.0
7.9
Embodied Carbon, kg CO2/kg material 52
3.4
Embodied Energy, MJ/kg 860
50
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 150
95
Resilience: Unit (Modulus of Resilience), kJ/m3 2940 to 5760
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 33
25
Strength to Weight: Axial, points 50 to 70
18
Strength to Weight: Bending, points 41 to 52
18
Thermal Shock Resistance, points 55 to 77
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 4.0
0 to 0.1
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 5.5 to 6.5
20 to 24
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.020
0
Iron (Fe), % 0 to 0.3
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.040
Oxygen (O), % 0 to 0.12
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 71 to 77
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Vanadium (V), % 7.5 to 8.5
0
Zirconium (Zr), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0