MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. 2017A Aluminum

Grade 21 titanium belongs to the titanium alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
71
Elongation at Break, % 9.0 to 17
2.2 to 14
Fatigue Strength, MPa 550 to 660
92 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 51
27
Shear Strength, MPa 550 to 790
120 to 270
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
200 to 460
Tensile Strength: Yield (Proof), MPa 870 to 1170
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 310
220
Melting Completion (Liquidus), °C 1740
650
Melting Onset (Solidus), °C 1690
510
Specific Heat Capacity, J/kg-K 500
880
Thermal Conductivity, W/m-K 7.5
150
Thermal Expansion, µm/m-K 7.1
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 5.4
3.0
Embodied Carbon, kg CO2/kg material 32
8.2
Embodied Energy, MJ/kg 490
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
46
Strength to Weight: Axial, points 46 to 69
19 to 42
Strength to Weight: Bending, points 38 to 50
26 to 44
Thermal Diffusivity, mm2/s 2.8
56
Thermal Shock Resistance, points 66 to 100
8.9 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
91.3 to 95.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 14 to 16
0
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Silicon (Si), % 0.15 to 0.25
0.2 to 0.8
Titanium (Ti), % 76 to 81.2
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants