MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. 319.0 Aluminum

Grade 21 titanium belongs to the titanium alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
72
Elongation at Break, % 9.0 to 17
1.8 to 2.0
Fatigue Strength, MPa 550 to 660
76 to 80
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 51
27
Shear Strength, MPa 550 to 790
170 to 210
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
190 to 240
Tensile Strength: Yield (Proof), MPa 870 to 1170
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 410
480
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1740
600
Melting Onset (Solidus), °C 1690
540
Specific Heat Capacity, J/kg-K 500
880
Thermal Conductivity, W/m-K 7.5
110
Thermal Expansion, µm/m-K 7.1
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 5.4
2.9
Embodied Carbon, kg CO2/kg material 32
7.7
Embodied Energy, MJ/kg 490
140
Embodied Water, L/kg 180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
88 to 220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
48
Strength to Weight: Axial, points 46 to 69
18 to 24
Strength to Weight: Bending, points 38 to 50
25 to 30
Thermal Diffusivity, mm2/s 2.8
44
Thermal Shock Resistance, points 66 to 100
8.6 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
85.8 to 91.5
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Silicon (Si), % 0.15 to 0.25
5.5 to 6.5
Titanium (Ti), % 76 to 81.2
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.5

Comparable Variants