MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. 707.0 Aluminum

Grade 21 titanium belongs to the titanium alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
70
Elongation at Break, % 9.0 to 17
1.7 to 3.4
Fatigue Strength, MPa 550 to 660
75 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 51
26
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
270 to 300
Tensile Strength: Yield (Proof), MPa 870 to 1170
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 310
180
Melting Completion (Liquidus), °C 1740
630
Melting Onset (Solidus), °C 1690
600
Specific Heat Capacity, J/kg-K 500
880
Thermal Conductivity, W/m-K 7.5
150
Thermal Expansion, µm/m-K 7.1
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 5.4
2.9
Embodied Carbon, kg CO2/kg material 32
8.3
Embodied Energy, MJ/kg 490
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
210 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
47
Strength to Weight: Axial, points 46 to 69
26 to 29
Strength to Weight: Bending, points 38 to 50
32 to 34
Thermal Diffusivity, mm2/s 2.8
58
Thermal Shock Resistance, points 66 to 100
12 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
90.5 to 93.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.8
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 14 to 16
0
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Silicon (Si), % 0.15 to 0.25
0 to 0.2
Titanium (Ti), % 76 to 81.2
0 to 0.25
Zinc (Zn), % 0
4.0 to 4.5
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants