Grade 21 Titanium vs. EN 1.6220 Steel
Grade 21 titanium belongs to the titanium alloys classification, while EN 1.6220 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is grade 21 titanium and the bottom bar is EN 1.6220 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 140 | |
190 |
Elongation at Break, % | 9.0 to 17 | |
23 to 25 |
Fatigue Strength, MPa | 550 to 660 | |
240 to 250 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 51 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 890 to 1340 | |
550 to 580 |
Tensile Strength: Yield (Proof), MPa | 870 to 1170 | |
340 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
250 |
Maximum Temperature: Mechanical, °C | 310 | |
400 |
Melting Completion (Liquidus), °C | 1740 | |
1460 |
Melting Onset (Solidus), °C | 1690 | |
1420 |
Specific Heat Capacity, J/kg-K | 500 | |
470 |
Thermal Conductivity, W/m-K | 7.5 | |
52 |
Thermal Expansion, µm/m-K | 7.1 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 60 | |
2.1 |
Density, g/cm3 | 5.4 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 32 | |
1.5 |
Embodied Energy, MJ/kg | 490 | |
19 |
Embodied Water, L/kg | 180 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 180 | |
110 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 2760 to 5010 | |
300 to 310 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 32 | |
24 |
Strength to Weight: Axial, points | 46 to 69 | |
19 to 20 |
Strength to Weight: Bending, points | 38 to 50 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 2.8 | |
14 |
Thermal Shock Resistance, points | 66 to 100 | |
16 to 17 |
Alloy Composition
Aluminum (Al), % | 2.5 to 3.5 | |
0 |
Carbon (C), % | 0 to 0.050 | |
0.17 to 0.23 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.4 | |
96.7 to 98.8 |
Manganese (Mn), % | 0 | |
1.0 to 1.6 |
Molybdenum (Mo), % | 14 to 16 | |
0 |
Nickel (Ni), % | 0 | |
0 to 0.8 |
Niobium (Nb), % | 2.2 to 3.2 | |
0 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.17 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.020 |
Silicon (Si), % | 0.15 to 0.25 | |
0 to 0.6 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Titanium (Ti), % | 76 to 81.2 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |