MakeItFrom.com
Menu (ESC)

Grade 21 Titanium vs. SAE-AISI 1132 Steel

Grade 21 titanium belongs to the titanium alloys classification, while SAE-AISI 1132 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 21 titanium and the bottom bar is SAE-AISI 1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 9.0 to 17
14 to 18
Fatigue Strength, MPa 550 to 660
240 to 380
Poisson's Ratio 0.32
0.29
Reduction in Area, % 22
39 to 46
Shear Modulus, GPa 51
73
Shear Strength, MPa 550 to 790
400 to 440
Tensile Strength: Ultimate (UTS), MPa 890 to 1340
640 to 720
Tensile Strength: Yield (Proof), MPa 870 to 1170
350 to 590

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1740
1460
Melting Onset (Solidus), °C 1690
1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Conductivity, W/m-K 7.5
51
Thermal Expansion, µm/m-K 7.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.9
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 32
1.4
Embodied Energy, MJ/kg 490
19
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 180
93 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 2760 to 5010
330 to 940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 46 to 69
23 to 25
Strength to Weight: Bending, points 38 to 50
21 to 23
Thermal Diffusivity, mm2/s 2.8
14
Thermal Shock Resistance, points 66 to 100
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.050
0.24 to 0.34
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.8 to 98.3
Manganese (Mn), % 0
1.4 to 1.7
Molybdenum (Mo), % 14 to 16
0
Niobium (Nb), % 2.2 to 3.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.17
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 76 to 81.2
0
Residuals, % 0 to 0.4
0

Comparable Variants