MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. 3003 Aluminum

Grade 23 titanium belongs to the titanium alloys classification, while 3003 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 6.7 to 11
1.1 to 28
Fatigue Strength, MPa 470 to 500
39 to 90
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 540 to 570
68 to 130
Tensile Strength: Ultimate (UTS), MPa 930 to 940
110 to 240
Tensile Strength: Yield (Proof), MPa 850 to 870
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
640
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
180
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.1
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
11 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 58 to 59
11 to 24
Strength to Weight: Bending, points 48
18 to 30
Thermal Diffusivity, mm2/s 2.9
71
Thermal Shock Resistance, points 67 to 68
4.7 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
96.8 to 99
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Manganese (Mn), % 0
1.0 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.6
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants